

Funktion und Bedienung der GEYER Y-Design App

Zielsetzung:

- Einfache Schaltungsdesigns anhand der benötigten technischen Parameter
- Überprüfung und Optimierung einer Quarzoszillator Schaltung

1. Funktion:

- Simuliert das Übertragungsverhalten des Pi-Netzwerkes, gebildet aus R_v , C_b , Q, C_a , nach Gain (Verstärkung) und Phase bei f_L (Center) und Umgebung (Span).
- Ziel: Gain (Verstärkung) bei f_L möglichst hoch.
 - Phase bei $f_{\rm L}$ möglichst nahe an -180°.
- Optimierung: Suche von Werten (manuell oder per Optimierungs-Button) für R_{ν} , $C_{\text{\tiny b}}$, $C_{\text{\tiny a}}$, bei denen das Ziel (s.o.) maximiert wird.
- Zu beachten: R_v , C_b , C_a sind die effektiven (wirksamen) Werte.
 - R_{ν} kann ganz oder zum Teil im Controller realisiert sein, z.B. Strombegrenzung, slewrate-Begrenzung, R_{dson} der Gatter, AGC etc.
 - C_b und C_a setzen sich zusammen aus Streukapazität der Leiterplatte, Eingangskapazität der Controller-Pins und der Kapazität der bestückten Kondensatoren.
- Designunterstützung: die Geyer App ergänzt und erleichtert Ihr Design, indem es die Überprüfung Ihrer Schaltung ermöglicht.

2. Simulationsmöglichkeiten:

Im Menü 'Circuit' können Sie zwischen "Quartz Crystal" und "Pierce- Oscillator" auswählen.

I. Menüpunkt "Quartz Crystal"- Schwingquarz mit Schaltungskapazität

Das Display zeigt die Impedanz bzw. die Admittanz eines Schwingquarzes in Serie mit einer (Schaltungs-) Kapazität und agiert somit als Impedanz- bzw. Admittanzanalyser. Bei der Herstellung werden die Quarze mit einer spezifizierten nominalen Serienkapazität abgeglichen. In der Anwenderschaltung entspricht dem die effektive Serien- bzw. Schaltungskapazität, die der Quarz 'sieht'.

Die Quarzbelastung ist für 1 V_{eff} (2.8 V_{pp}) am Schwingquarz berechnet. Für andere Spannungen ist der Belastungswert angepasst zu berechnen.

Das Hauptanzeige-Menu stellt Betrag (Gain) und Phase von Impedanz bzw. Admittanz dar. Mit dem Ortskurven-Auswahlfeld können Sie eine zusätzliche Darstellung von Admittanz bzw. Impedanz mit jeweiligem Real- und Imaginärteil einblenden. "Spielen" Sie mit den Quarz-Parametern, um mehr über das Verhalten der Quarze zu erfahren!

Resonanzart

• Hier ist die Angabe einer nominellen Lastkapazität möglich. Wenn man dazu passend den Wert der (Schaltungs-) Lastkapazität C_L (unter 'Schaltung') auf diese nominelle Lastkapazität setzt, ergibt sich die spezifizierte nominelle Last-Resonanzfrequenz f_{Lnom}.

Für Serienresonanz-Schwingquarze aktivieren Sie die Option 'Serienresonanz'. Die Frequenz ergibt sich dann bei Maximalstellung des Schiebereglers für C_L (C_L kurzgeschlossen).

Nebenresonanzen

 Mit dieser Option können Sie beispielhaft eine zusätzliche Störresonanz des Quarzes simulieren. Bei Temperaturänderungen können sich diese 'Nebenresonanzen' wegen ihres sehr viel größeren Temperaturkoeffizienten über die Hauptresonanz hinwegbewegen. Es kann aus drei Nebenresonanz-Widerständen ausgewählt werden. Das Nebenresonanz-C₁ beträgt bei den jeweiligen Simulationen immer C₁ / 10.

II. Menüpunkt Pierce-Oscillator

Das Display zeigt das Verhältnis V₁ / V₂ eines für einen Pierce- Oszillator typischen Rückkopplungs-Netzwerks. Mit der Betriebsspannung oder mit der Arbeitspunktfestlegung zusammenhängende Schaltungskomponenten sind im Diagramm nicht enthalten.

Die Pierce-Schaltung benötigt einen Schwingquarz mit Lastkapazität, wenn keine zusätzlichen Induktivitäten in Serie zum Quarz vorhanden sind.

Der Ausgangswiderstand des Inverters zusammen mit R_v und dem PI-Glied C_a/ Quarz/ C_b bilden einen schmalen Bandpass mit frequenzabhängiger Phasenverschiebung. Gemäß Schwingbedingung muss die Gesamtphase 360° sein. Der Inverter sorgt für geringfügig mehr als 180° wegen zusätzlicher, halbleiterbedingter Laufzeitverzögerungen. Daher kann die externe Phasenverschiebung etwas kleiner als 180° sein.

3. Vorgehensweise:

Schritt 1: Eingabe der Daten des gewählten Quarzes und immer mit CR (return) quittieren.

Schritt 2: Manuelles Verändern von C_a, C_b und R_v dahingehend, dass bei möglichst geringer Abweichung der Frequenz vom Nennwert, die Werte von Betrag und Phase maximal werden (s.o. Ziel). Oder: Benützen des Optimierungs-Buttons.

Schritt 3: Sie können auch eine gewünschte Baugröße auswählen und Ihre Ergebnisse speichern bzw. einlesen. Die Ergebnisse können Sie uns per E-Mail zukommen lassen. Wir liefern dann auf Wunsch die entsprechenden Muster zur Überprüfung.

Schritt 4 (erforderlich): Überprüfung der Dimensionierung an einem Prototyp, ob der Controller mit dem ermittelten Netzwerk zurechtkommt, d.h. ob die Frequenz stimmt, ob die Streukapazitäten korrekt erfasst wurden und ob ausreichend Anschwingreserve vorhanden ist.

4. Anmerkung:

• Zur Überprüfung bzw. Dimensionierung der Kondensatoren C_a und C_b, kann man bei einem bekannten C_L den klassischen oder den alternativen Ansatz wählen:

Klassischer Ansatz	Alternativer Ansatz
(beide Kondensatoren gleich groß): $C_a = C_b = 2x C_L - C_s$	(Kondensatoren unterschiedlich):
	$C_a \approx 1,1 \sim 1,2 \times C_L - C_s$
	$C_{b} \geq 4x C_{L} - C_{s}$

Der alternative Ansatz bringt häufig Vorteile: Größere Anschwingreserve, schnelleres Anschwingen, geringere Quarzbelastung.

• Es gibt Controller, die aber gleichgroße Kondensatoren C_a und C_b benötigen. Es gibt Controller, deren AGC (automatic gain control) auf der Eingangsseite des Oszillator-Verstärkers eingreift, wodurch auch mit einem entsprechend dimensionierten Pi-Netzwerk keine Spannungserhöhung bewirkt werden kann.

5. Weitere Designregeln: finden Sie auf unserer Homepage im Dokument Kurzes Schwingquarz- und Oszillator-Tutorial

https://www.geyer-electronic.de/design-testcenter/design-unterstuetzung/#white-papers

GEYER Electronic GmbH Behringstraße 6 D-82152 Planegg/ München +49 89 546868-0

Marketing/07_23/V 1.0